AS LEVEL Section A
FACT FILES
Technology & Design
For first teaching from September 2011
For first award in Summer 2012
Metal Part 1
Learning Outcomes

Students should be able to:

• Demonstrate knowledge of the available form of supply of metals;
• Understand the difference between ferrous and non-ferrous metals and alloying;
• Demonstrate knowledge and understanding of the properties, working characteristics and uses of the following metals – aluminium, aluminium alloys, copper, brass, zinc, steel (mild, medium and high) and stainless steel;

Course Content

Available form and supply of metals

Metals make up a major portion of all the naturally occurring elements and form about quarter of the Earth’s crust.

Forms and availability:

The diagrams below show examples of solid lengths and also tubes. When you order metals you need to describe the section you want. As well as being supplied in sheet form, the sections shown below are the most common.

Ferrous metals

Ferrous metals contain iron and other elements. Almost all ferrous metals, including mild steel, cast iron and tool steel, are magnetic.

Iron is the basis for more sophisticated metals; however, in Britain, production depends on the importing of high-grade magnetite ore. The conversion of ore into a usable material involves a number of processes:

• Washing
• Grading
• Crushing

In the production of iron, ore is refined in a blast furnace to provide pig-iron.

Ferrous metals and alloys include:

• Steel (mild, medium and high)
• Stainless steel
• Iron
• Cast iron
Non-ferrous metals
This group of metals contain no iron. The following metals are included in this group:
- Aluminium
- Aluminium alloys
- Copper
- Brass
- Zinc

Aluminium is the most plentiful metal in the Earth's crust. Increasing demand for lightness combined with strength also makes it the largest, in terms of production output, with the non-ferrous category. Aluminium comes from its hydrated form, Bauxite.

Alloys
Alloys are a mixture of two or more metals formed together with other elements to create new metals with improved properties and characteristics. There are two groups:
- Ferrous alloys
 - Stainless steel (steel and chromium)
 - High speed steel (steel and tungsten)
- Non-ferrous alloys
 - Brass (copper and Zinc)
 - Duralumin (aluminium and copper)

Properties of alloy steel, such as hardness, are increased by the addition of other metals such as chromium, tungsten, nickel and vanadium. Carbon steels can lose their hardness at high temperatures; however, high-speed steels maintain their hardness even at red heat. High-speed steels are used to manufacture cutting tools and drill bits.

Stainless steel contains 12% chromium and some nickel and offer qualities such as resistance to corrosion.

<table>
<thead>
<tr>
<th>Material</th>
<th>Category</th>
<th>Melting point</th>
<th>Composition</th>
<th>Properties and working characteristics</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Iron</td>
<td>Ferrous</td>
<td>1200°C</td>
<td>Iron +3.5% carbon, wide range of alloys, white, grey and malleable forms.</td>
<td>Hard skin, brittle soft core, strong under compression, self lubrication, cannot be bent or forged.</td>
<td>Heavy crushing machinery, car brake drums or discs, vices or machine parts.</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>Alloy (ferrous)</td>
<td></td>
<td>Alloys 18% chromium, 8% nickel, 8% magnesium.</td>
<td>Hard and tough, resists wear, corrosion-resistant, different forms affect malleability, difficult to cut or file.</td>
<td>Sinks, cutlery, dishes, teapots.</td>
</tr>
<tr>
<td>Mild Steel</td>
<td>Alloy (ferrous)</td>
<td></td>
<td>Alloys of iron and carbon 0.15-0.35% carbon.</td>
<td>Tough, ductile and malleable, high tensile strength, easily joined, welded, poor resistance and corrosion, cannot be hardened and tempered, general purpose material.</td>
<td>Nails, screws, nuts, bolts, Girders, car bodies.</td>
</tr>
<tr>
<td>High-speed steel</td>
<td>Alloy (ferrous)</td>
<td></td>
<td>Medium carbon steel + tungsten + chromium + vanadium.</td>
<td>Very hard, resistant to frictional heat even at red heat, it can only be ground.</td>
<td>Lathe cutting tools, drill bits, milling cutters.</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Non-ferrous</td>
<td>660°C</td>
<td>Pure metal</td>
<td>High strength/weight ratio, light, soft, and ductile, annealing necessary, difficult to join, non-toxic, good conductor of heat and electricity, corrosion resistant, corrosion resistant, polishes well</td>
<td>Kitchen cooking utensils, packaging, cans, foils, window frames.</td>
</tr>
<tr>
<td>Copper</td>
<td>Non-ferrous</td>
<td>1083°C</td>
<td>Pure metal</td>
<td>Malleable, ductile, tough, suitable for hot and cold working, good conductor for heat and electricity, corrosion-resistant, easily joined, solders and brazes well, polishes well, rather expensive.</td>
<td>Hot water storage cylinders, central heating pipes/tubing, wire electrical, copper clad board (PCB).</td>
</tr>
<tr>
<td>Brass</td>
<td>Alloy (non-ferrous)</td>
<td>900-1000°C</td>
<td>65% copper, 35% zinc</td>
<td>Corrosion-resistant, increased hardness, casts well, work hardens, easily joined, good conductor of heat and electricity, polishes well.</td>
<td>Casting, boat fittings, ornaments.</td>
</tr>
<tr>
<td>Zinc</td>
<td>Non-ferrous</td>
<td>232°C</td>
<td>Pure metal</td>
<td>Very weak, poor strength/weight ratio, extremely resistant to atmospheric corrosion, low melting point, ductile but difficult to work, expensive.</td>
<td>Galvanised steel, dustbins, corrugated iron sheet roof, die casting alloys and rust proof paints.</td>
</tr>
</tbody>
</table>
Revision questions

1. Electrical cables use copper for the wire and polythene for the outer cover. State two specific properties that would have influenced the selection of copper.

2. Metals are supplied and used in a range of forms.
 • State four different forms in which metal is available.
 • Drill bits can be manufactured from high carbon steel. Give two reasons why high carbon steel is used.

3. When selecting a metal for external gates, railing and stairs, the designer needs to consider the following:
 • Functional requirements
 • Manufacturing demands
 • Environment
 • Availability

From each of the four points above, briefly outline the information the designer would gain from each.